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Abstract. The partition function of the Potts model on any lattice can readily be written as a 
Whitney polynomial. Temperley and Lieb have used operator methods to show that, for a 
square lattice, this problem is in turn equivalent to a staggered ice-type model. Here we 
rederive this equivalence by a graphical method, which we believe to be simpler, and which 
applies to any planar lattice. For instance, we also show that the Potts model on the 
triangular or honeycomb lattice is equivalent to an ice-type model on a Kagomt lattice. 

There is at present considerable interest amongst statistical mechanics and com- 
binatoridits in the evaluation of the Whitney polynomial of a graph. This is because 
thisproblem is the same as obtaining the partition function of the Potts (1952) model on 
hegraph (Kasteleyn and Fortuin 1969, Fortuin and Kasteleyn 1972, Baxter 1973,  
lahiein addition it contains the percolation and colouring problem as special cases. 

Some exact results are available for the square lattice graph. In particular, when the 
arsociated Potts model has two states per spin, it becomes the king model and the 
ppblem is soluble. Also, Temperley and Lieb (1971) have established a remarkable 
esuivalence between the Whitney polynomial €or a square lattice 2 and the partition 
hKtbn Of a staggered ice-type model on a related square lattice 2”. 
. Although the polynomial has not yet been evaluated exactly for the square lattice, it 

to think that it may be. The problem has therefore attracted attention 
$“W theoreticians, to the extent that we feel it worthwhile presenting a re- 
htiOn of the equivalence established by Temperley and Lieb. We use graphical 

which we believe to be simpler than the operator method of Temperley and 
‘b. they apply to any planar lattice, regular or not. 

‘ ’*model and Wtney polynomial 

Fist wedefine the q-state Potts model. There is more than one model by this name 
(hts 19s2, Domb 1974); the one we use here is the ‘scalar’ rather than the ‘vector’ 
model. 

jhinmby National Science Foundation Grant No. DMR 72-03213 A01. 

397 
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Let 2 be any lattice and with each site i associate a spin U, with value 1 
Let nearest-neighbour spins have interaction energy - E  if they are alike, zero 
are different. Then the partition function is 

"..,B 

where the summation inside the exponential is over all nearest-neighbour 
the lattice. The summation outside is over all states of the spins. If there are ~ s i t e s ,  
then there are qN spin states of the system. ~ 

(. hloo 

Set 

v=e&-1 ,  

then 

Let E be the number of edges of the lattice. Then the summand in (3) isaprduad 
E factors, and expanding the product gives 2€ terms. 

To each term we associate a bond-graph in 9 by placing bonds on edges where 
have taken the corresponding &(ai, uj) term in the expansion. If we take theunitterm, 
we leave the corresponding edge empty. 

This gives a one-to-one correspondence between terms in the expansion of t6e 
summand of (3), and graphs on 9. 

Consider a typical graph G, containing 1 bonds and C connected components 
(regarding an isolated site as a component). Then the corresponding term in (3) 
contains a factor U', and the effect of the delta functions is that all sites within a 
component must have the same spin U. Summing over all independent spins therefore 
gives 

z = c q v ,  
G 

(41 

where the summation is over all the 2E graphs G that can be drawn on 8 'Ik 
expression (4) is a Whitney (1932) polynomial. 

It is easy to see that (4) contains the percolation and colouring problems as@ 
cases. In particular, 

is the mean number of components of the percolation problem. Also, if E -  --old 

U = - 1, then the spins (or colours) of adjacent sites must be different, adzbecoma 
the q-~~lour ing  polynomial of the lattice. 

The edges of regular lattices can be grouped naturally into certain For 
instance the square lattice has edges which are either horizontal or Vertical. Itsthen 
natural and convenient to generalize (1)-(4) so as to allow different Values Of * 
interaction energy - E, according to which class the Corresponding edge belong. 
the value of E for edges of class r, and 

If673 

(9 
U, = exp(gE,) - 1, 
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generalization of (4) is easily seen to be: 
its& 

*besu"ation is over all graphs G, Cis  the number of connected componentsin 
Gd 4 is h e  number of bonds on edges of class r ( r  = 1,2,3, . . .). 

lattices: the surrounding lattice 3" 

kremarb of 0 2 apply to any lattice 9, whatever its structure or dimensionality. 
maow on we specialize to 2 being a planar lattice. It does not have to be regular, 
Bcankanyfinite set of points (sites) and straight edges linking pairs of points. Points 
anelinked by an edge are said to be 'neighbours' or 'adjacent'. Planar means that 
"0 edges cross. 

we &ate with 9 another planar lattice 9, as follows. 
h w  simple polygons surrounding each site of 2 such that: 
(j) no polygons overlap, and no polygon surrounds another; 

(U) polygons of non-adjacent sites have no common corner; 
(iii plygons of adjacent sites i and j have one and only one common corner. This 

Wetakethe comers of these polygons to be the sites of 9, and the edges to be the edges 
d f .  Hereinafter we call these polygons the 'basic polygons' of 9'. 

We see that there are two types of sites of 9. Firstly, those common to two basic 
&gons. These lie on edges of 2 and have four neighbours in 9. We term these 
Fntemal'sites. Secondly, there can be sites lying on only one basic polygon. These have 
hneighbours and we term them 'external' sites. (The reason for this terminology will 
h m e  apparent when we explicitly consider the regular lattices.) 

&above rules do not determine 9 uniquely, in that its shape can be altered, and 
sites can be added on any edge. However, the topology of the linkages 

k w n  internal sites is invariant, and the general argument of the following sections 
toany allowed choice of 9. (For the regular lattices there is an obvious natural 

h.1 In figure 1 we show an irregular lattice 9 and its surrounding graph 2'. 

comer lies on the edge (i, j ) .  

1. An irregular lattice 2 (open circles and broken lines) and its surrounding lattice 
3' (full circles and lines). The interior of each basic polygon is shaded, denoting 'land'. 
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It is helpful to shade the intenor of each basic polygon, as in figure 1, and to rekanl 

of 
sites 

such shaded areas as ‘land‘, unshaded areas as ‘water’. Then 9‘ consists of a n u m b  
‘islanb’. Each island contains a site of 2. Islands touch on edges of 2, at internal 
of s. 

4. Polygon decompositions of 9 

We now make a one-to-one correspondence between graphs G on 2and dampod-  
tions of 2’ as follows. 

If G does not contain a bond on an edge (i, j ) ,  then at the correspondingintemdik 
of 9 separate two edges from the other two so as to separate the islands i and j,ain 
figure 2(a). If G contains a bond, separate the edges so as to join the islands, 
figure 2(b).  Do this for all edges of 2. 

I i 

(0) (b ) 

F w  2. The two possible separations of the edges at an internal site of 3 (lyingon ibr 
edge (i, j )  of 2‘). The first represents no bond between i and j ,  the second a bond. 

The effect of this is to decompose 2’ into a set of disjoint polygons, an examplebeing 
given in figure 3. (We now use ‘polygon’ to mean any simple closed polygonal pathon 
9.) 

Figure 3. A graph G on 3 (full lines between open circles represent bqnb),,dtb off corresponding polygon decomposition of 2‘. To avoid confusion at internal slt$,Pies 
are not explicitly indicated, but are to be taken to be in the same positions as In fip 

Clearly any connected component of G now corresponds to a large island in ’* 

made up of basic islands joined together. Each such large island will have an Outer 
e i d d  perimeter, which is one of the polygons into which 9 is decomposed. A 

may also contain lakes within; these correspond to circuits of G and also haveaPO1yp 
as outer perimeter. 
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wp$ygon is of one of these two types. Thus 9 is broken in top  polygons, where 

&Cand s are, respectively, the number of connected components and circuits in G. 
fffb N sites, then Euler’s relation gives 

p=c+s, (7) 

S=C-N+Z,+l,+lI,+. . .. (8) 
Eliminating S and C from the above equations (61, (7) ,  (8), it follows that 

z= qN/, q “ ” x : ~ x : z x ~  . . .) (9) 

Bodwenow take the summation to be over all polygon decompositions of 8’. Here p is 
&number of polygons in the decomposition, and 1, is the number of internal sites of 
&s r where the edges have been separated as in figure 2(b). 

5 Qaideot ice-type model on 9 

Inthissection we first define an ice-type model (Lieb 1967) on the lattice 9, and state 
&at its partition function is 4-”*Z. We then prove this equivalence. 

Let fl and z be two parameters given by 

9l” = 2 cosh 6, z = exp(6/2~>.  (1 1) 
Then the ice-type model is defined as follows. 

(a )  Place arrows on the edges of 2’ so that at each site an equal number of arrows 
point in and out. 

(b) With each external site associate a weight zcl if an observer moving in the 
direction of the arrows turns through an angle a to his left, or an angle -cy to his 
right, as he goes through the site. This angie Q is shown in figure 4. 

&>O &CO 

figure 4. External sites of 2” at which an observer moving in the direction of the arrows 
turns through an angle a to his left, or equivalently an angle -a to his right. Note that 
- r < a < r ,  and the angle between the edges is P-- (Q( .  

fiere are six possible arrangements of arrows at an internal site, as shown in 
fiere 5. With arrangement k on a site of class r associate a weight wk, where 

s-B z-P-s +X,zu+Y, Z B * ~ + X , Z - a - Y  0 1 ,  . , 0.5 = fQ-’, Xy?*-’, XrZ 3 

(12) 
and the angles a, p, 7, 8 are those shown in figure 5 .  



402 R J Baxter, S B Kelland and F Y Wu 

i i 

5. A typical internal site of 2, showing the angles between edges and thskpordble 
arrangements of arrows. When using (12) and this figure it is important to note that& 
angles a and y lie inside basic polygons (‘islands’) of 3, while /3 and S lie ou&i& 

The partition function of this ice-type model is 

Z’ = C IJ (weights), 

where the product is over all sites of 2” and the summation over all allowed mow 
configurations on 9. We shall prove that 

where Z is the Potts model partition function (or Whitney polynomial) defined ad 
discussed in the preceding sections. 

5.1. Proof of equivalence 

Take a polygon decomposition of 9’ and place arrows on the edges so that at each 
corner there is one pointingin and one pointingout. Give a polygon cornera weighti”’ 
where a is the angle to the left through which an observer moving in the direction of the 
arrows turns when passing through the corner. Since edges cannot overlap, (Y must liein 
the interval - T < a < T. 

Since each polygon is a simple closed curve, on moving right round the polygon this 
observer turns through a total angle + 2 ~ ,  depending on whether the arrows Pint 
anticlockwise or clockwise. Both cases occur, so this rule gives a polygon a total weight 

z27r +z-2.rr 

The conditions (1 1) ensure that this is q ‘I2, which from (9) is precisely the weightwe 
wish to associate with each polygon. It follows from (9) that q-”‘Z can be obtaindby 
the following procedure. 

(A) At each internal site of 2’ separate the edges, either as in figure 2 ( ~ )  or@). If 
the latter, associate a weight x, where r is the class of the site. 

( B )  Place arrows on the edges round each site (internal and external), so as 
follow one another round the polygon corners. Associate the aPPropnate 

(0 Do (A) and ( B )  independentlyforeach site. Then require that on anedge(il) 

rodud 

weight f a  with each corner. . .  

there cannot be an arrow pointing into (or out of) both sites i and j. 
configurations that fail this requirement on any edge. 

(D) Sum over all remaining configurations thus obtained, weighted by thep 
of the individual weights. 
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(A) and (B)  can be performed independently for each site, they can be 

(AB) Place arrows on the edges surrounding each site in any configuration that is 
generated by rules (A) and (B) .  Give each such configuration a weight equal 
to the product of the x, and corner weights given by rules ( A )  and (B) ,  
summed over all ways ( A )  and (B)  give this arrow configuration. 

since ( A )  and (B)  can only give configurations with an equal number of arrows into 
doutofeach site, the new rules (AB) ,  (C), ( D )  define an ice-type model on 9, with 
 weights given by (AB). 

At external sites rule (B)  immediately gives the rule ( b )  that we wish to establish. At 
intemd sites ( A )  and (B)  give eight possibilities, as shown in figure 6, but we note that 
the 1st two resulting arrow configurations are the same in the top and bottom rows. 
@c&ingthe weights from rules ( A )  and (B) ,  the resulting total weights for the six 
distinct configurations are those given by equation (12) of rule (c). Thus the ice-type 
deldefined by (AB), (C), ( D )  is the same as that given by ( a ) ,  (b ) ,  (c). This proves 
bequation (14) and establishes the desired equivalence. 

colnb&d into: 

Figure 6. The two possible separations of edges at an internal site of 2", and the eight 
allowed arrangements of arrows thereon. The product of the weights given by rules ( A )  and 
( B )  is shown underneath, using the notation of figure 5 and omitting the suffix of x, 

5.2 Four-co!ouring problem 

Itisfascinatingto wonder whether this equivalence bringsus any closer to a proof of the 
fmoufour-colour conjecture. From ( l l ) ,  q = 4 is a 'critical' case, since for 4 < 4  the 
Parameter 8 is pure imaginary, while for q > 4 it is real. 

Atq=4 ,  z = 1 and for the colouring polynomial x = -4. Thus the weights (12) are 
and the last two, as well as the first, are positive. However, the third and fourth are 

ne&ftiVe. For a bipartite lattice 3 it is not difficult to show that configurations 3 and 4 
minPah, SO can both be replaced by positive values, which proves that in this case 
16ereisapositive number of four-colourings of 9. However, since a bipartite lattice can 
bydefinition be coloured with two colours, this is not a significant result! One needs a 
proof &at z is positive for any lattice when 6 is real. 

&other intriguing point which suggests that our transformation may be relevant is 
tkfouowing. It is conjectured from numerical and other studies that the real zeros of 

polynomial of an arbitrary planar lattice tend to limits as the lattice 
(Kasteleyn 1975). These limits are supposed to occur at the 'Beraha 

- 9 = [ 2 ~ 0 s ( ~ / n ) ] ~ ,  n=2 ,3 ,4 , .  . . (Tutte 1974). 
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From (1 1) we see that this corresponds to Our parameter e having the simple setof 
values e = iv/n, n = 2,3,4,  . . . . 

6. Theregolarlattices 

For the interior of regular lattices there is an obvious natural choice of 2, 
take the sites of 2" to be the midpoints of the edges of 9, and to take two sitesofPtoh 
adjacent if and only if the corresponding edges of 9 meet at a common site a n d b u a  
common face. All sites of 2" are then 'internal' except at the boundaries, whichis& 
reaon for our terminology. In figures 7 and 8 we show the square and triangularlattioes 
and their surrounding lattices (square and KagomC, respectively). 

Figure 7. The square lattice 2 (open circles and broken lines) and its surroundinglathd 
(full circles and lines). The two classes of edges of 9, horizontal and vertical, are indicated 
by the numbers 1 and 2, respectively. 

Figure 8. The triangular lattice 2 (open circles and broken lines) and its Surrounding 

Kagomt lattice P (full circles and lines). 

call 
The square lattice has two classes of edges, horizontal and vertical, which we 

classes 1 and 2, respectively. The triangular lattice has three classes (1, 2 and 3)9 

shown in figure 8. Setting 
s = e'/', t = e*/3, (16) 
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aaomhom equation (12) and figure 5 that for the square lattice the vertex weights of 
site of 9' of class r are 

*for the triangular lattice they are 

ne anfigurations are still labelled 1, . . . , 6  as in figure 5 ,  where the adjacent 
p are drawn to the left and the right. Thus to obtain the weight of an arrow 

d p t i o n  at a site of 2' on a vertical edge of the square lattice 2, it is necessary to 
mfiwe 7 through 90" before using figure 5 and equation (17). Similar rotations are 

Forthe square (triangular) lattice, external sites of 2 have weight s1/2(f1/2) if the 
 turn to the left through the site, and weight ~ - ' / ' ( t - ' / ~ )  if they turn to the right. 

If we wish, we can eliminate fractional powers of ee by associating additional 
mutually inverse weights with the tips and tails of some arrows. Consider for instance 
thesurrounding lattice 2 of the square lattice, shown in figure 7. With every arrow 
pointing up and to the right associate a further weight s-'(s) with the site into (out of) 
which it points. This leaves the partition function unchanged, but on sites of type 1 
dtipks OS, 0 6  by s, S-', respectively. On sites of type 2 it multiplies them by s-l, s. 
Wecan then verify that our ice-type model for the square lattice is the same as that of 
Temperley and Lieb (their figure 1 and table 2, reversing vertical arrows and rotating 
through 135" clockwise). The only difference is that we have included the boundary 
mnditions. 

for edges 1 and 2 of the triangular lattice. 

6.1. Duality 

TbePottsmodel is known to have a duality property (Potts 1952, Kihara er a1 1954, WU 
d w a n g  1976). Our methods provide another way of re-deriving this. 

h t 9 D  be the lattice dual to a lattice 2. Then from figures 7 and 8 it is apparent that 
thesurrounding lattice 2?' of 2 is also the surrounding lattice of -YD. (Here we do ignore 
boundary conditions.) 

From (9) we can regard the Potts model partition function Z as a function of 4 and 
11tX2, X3, . . . . Let us also define a Potts model on the dual lattice Z,,, with partition 

ZD and parameters q, yl ,  y2, y3, . . . (using the obvious one-to-one correspon- 
den@k~een edges of 2 and 2D). We can repeat the above reasoning to obtain the 
Ice-b'"del on 2' that is equivalent to the dual model. We find that it is again given 
by rules (a), (b), (c) ,  except that in (12) x, disappears and the terms that originally did 
not contain a factor x, now contain yr. 

bisequivalent to first dividing the weights (12) by x, then replacing x, by YL'. 
we obtain the duality relation 

Z(q; xl, x 2 , .  . . ) = x;lx;. . . . ~ ~ ( 4 ;  x;', xi1,  . . . ), (19) 

is the number of edges in 2 (or ZD) of class r. 
TnepOtts model on the honeycomb lattice is therefore also equivalent to an ice-type 

modelon the Kagomi lattice. 
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6.2. Cyclic boundary conditions 

m e  equivalence can be extended to lattices wound on a cylinder. In this case the role 
leading to (1s) gives a polygon that winds around the cylinder an inarrea weight 
1 + 1 = 2. To correct this, we draw a ‘seam’ through the lattice 2, avoiding dl sites, 
from the bottom of the cylinder to the top. We then associate an extra weight 
with arrows pointing to the left (right) on edges that cross the seam. T h i s e n s ~ ~ ~ t ~  
polygons give the correct contribution (15). 

It is not clear that the equivalence can be further generalized to toroidal bo 
conditions. In one sense this does not matter, since in lattice statistics we we muany 
interested in the ‘thermodynamic limit’ of a large lattice, when boundary conditiomarc 
expected to be irrelevant. However, we feel it does clarify the equivalence toesQbhhh 
exactly for finite lattices. 

Note added in proof. Our ‘surrounding’ lattice is the same as the ‘medial’graphb!@, 
theory (Ore 1967, pp 47 and 124). The ‘Whitney’ polynomial is also known 
‘dichromatic’polynomial (Tutte 1967). Nagle (1968) used the methodof 8 2 toshow& 
equivalence of the colouring problem with a Whitney polynomial, and in 1969 defined8 
staggered ice-type model similar to those that occur here. 

e@(e-? 
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